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Ising models in high dimensions are used to compare high-temperature series 
expansions with Monte Carlo simulations. Simulations of the magnetization on 
four-, six-, and seven-dimensional hypercubic lattices give consistent values of 
the critical temperature from both equilibrium and nonequilibrium data for 
d= 6 and 7. We tabulate 15 terms of series expansions for the susceptibility for 
general d and give J/kBTc = 0.092295 (3) and 0.077706 (2) for d= 6 and 7. In 
contrast to five dimensions, where earlier series found nonanalytic scaling 
corrections, for d= 6 and 7 the leading scaling correction may be analytic in 
T-To. In most cases these expansions gave more accurate results than these 
simulations. 

KEY WORDS: Series expansions; Monte Carlo simulation; Ising models; 
corrections to scaling. 

1. I N T R O D U C T I O N  

Series expansions and  Mon te  Carlo s imulat ions are the two s tandard  

numerica l  methods  to investigate collective phe nome na  in discrete models 
of statistical physics. Here we compare  them for h igh-dimensional  Ising 
models where the critical exponents  are known.  Modern  computers  allow 
the s imula t ion  of Ising models with hundreds  of mill ions of spins, and  thus 

make studies of dimensionali t ies  above four much easier. There we know 

the leading critical exponents ,  which are those of mean  field theory, and  
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thus we can check better how reliable our methods are. Eleventh-order 
series expansions were generated (1) for dimensions below 7 in 1964, and we 
have now extended these to 15th order in general dimensionality d. Thus 
we can compare the accuracy of series versus Monte Carlo methods for 
high dimensions. 

In particular, we want to find out if we can extract from these numeri- 
cal data the leading scaling correction factor const + (To-T)~I ;  theoreti- 
cally (2) we expect the leading correction to have A 1 = 1/2 in five and to be 
analytic in six and more dimensions. The exact form for these corrections 
is given in ref. 2, where the general result A l = ( d - 4 ) / 2  is quoted, but 
according to Gut tmann (2~ at d =  6 the analytic correction is modified by a 
logarithmic factor, and at d = 7 we expect additional analytic corrections to 
possibly overwhelm the Z~ 1 = 3/2. Since for Monte Carlo simulation we 
have developed programs which work in several dimensions (possible for 
series expansions for some time), we want to compare the accuracy 
achieved with these two methods (3'4) for a case that should be free of some 
of the complications of previous comparisons. Apart from obtaining 
answers for methodological comparisons from the high-dimensional 
programming methods, these new algorithms may be of practical use in 
other problems, such as high-dimensional shape space in immunology. (5) 
We present results for simulations in d =  4, 6, and 7 and for analysis for 
series in d =  6 and 7. The series are quoted in general dimensions. 

2. S I M U L A T I O N S  

To simulate L d spins in d dimensions, mostly we use a usual multispin 
coding program t6~ with four bits per spin to sum up easily the 14 neighbors 
in up to seven dimensions. After the calculation we compress four words 
into one to save memory, and in a slight improvement over ref. 4 we need 
only three lattice lines of length L in the expanded form of four bits per 
site. Our program is written for workstations and Intel 860-based parallel 
computers and it is not vectorized./7~ [Each Intel 860 (i860) chip is 
comparable in speed with an IBM RS/6000 320 workstation if programmed 
in Fortran; the Intel Hypercube at KFA Jiilich allows one to use up to 32 
such processors in parallel.] Thus it is suited for slow simulations of large 
lattices, whereas other programs (8~ are better for fast simulations of smaller 
lattices. Each i860 processor needed a few microseconds to update a spin 
in Glauber kinetics (heat bath). Our largest lattice sizes are L d= 2244, 316, 
and 167, larger than other simulations known to us for the same dimen- 
sionalities. (9~ A 256M IBM RISC/6000 560 was used for the 316 sample. 
We started with all spins up and watched how the magnetization then 
relaxed toward its equilibrium value. 



Series and MC Study of Ising Models 1223 

Above four dimensions the critical exponents for the leading behavior 
are those of mean field theory.(/~ Thus the magnetization at the critical 
temperature relaxes toward zero with time t as t 1#= t -~ /2  whereas its 
equilibrium behavior below T c is 

M =  B(1 - T/Tc)I/2[1 + O ( T  c - -  T )  'a' ] ( 1 )  

An effective kinetic exponent z can be determined from consecutive 
magnetization values and is plotted versus 1/t in Fig. 1 for K =  J/kB T =  
0.09225, 0.09230, and 0.09235 and d = 6 .  We see that the middle tem- 
perature gives a good extrapolation to the correct z = 2, whereas the two 
other temperatures are plausible upper and lower error limits. Figure 2 
shows analogous data in seven dimensions for K =  0.07769, 0.07771, and 
0.,07776; similarly we conclude that the correct z = 2 is obtained for K =  
0.07772 _ 0.00003. Figure 3 shows that this method fails in four dimensions, 
where at the presumed (1~ critical point K=0.14966 the data first seem 
to suggest a much higher z value and only for longer times might turn 
downward to z = 2. The method (4'8) of looking at large lattices for rather 
short times thus has been tested for two to seven dimensions and was 
found to work in all except for four dimensions, where logarithmic 
correction factors (1~ are expected. 
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Fig. 2. As  for Fig. 1, for 167 spins at K=0.07769 (+ ) ,  0.07771 (dots), and 0.07776 ( x ) ;  
the small dots refer to 117 sites. 
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We also looked at the spontaneous magnetizations in six and seven 
dimensions and found them to vanish at about the same critical tem- 
peratures as found in the above dynamical method. When K approaches its 
critical value, the slopes dM2/dK increase toward a finite value related to 
the critical amplitude B, thus confirming /~= 1/2. This increase seems 
asymptotically linear in K - K c  and is thus consistent with A~ = 1, i.e., with 
analytic corrections to scaling. However, we found the same behavior also 
from the five-dimensional data used in ref. 4, where A 1 = 1/2 is expected. 
For  d =  6 and 7 we found B =  2.0 for the amplitude of the spontaneous 
magnetization, Eq. (1). (Ref. 4 claimed Monte Carlo evidence in favor of 
A~ < 1/2, but that was based on a wrong interpretation of Fig. 3 there.) 

Thus the Monte Carlo simulations gave good values for the critical 
point and the leading behavior of the spontaneous magnetization, but no 
clear evidence for a change from nonanalytic to analytic corrections. 

3. S E R I E S  E X P A N S I O N S  

New 15th-order series have recently been obtained (11~ for the suscep- 
tibility Z of the Ising model on hypercubic lattices in general dimension. 

enumeration in dimen- This is an extension by four terms of the previous " (1~ 
sions below 7 and presumably the first published enumeration for 7 and 
higher dimensions. The series were generated in the framework of a project 
to study the Ising model in a random field, and are based on the No-Free- 
End graph enumerations of Harris. (12) Details of the generation for both 
the zero-field and the random-field cases are given in ref. 11, but the series 
for the special case of the zero-field Ising model are presented in this paper 
in Table I. Some results of the analysis for the five-dimensional case were 
presented in ref. 4 and we discuss below the results for dimensions six and 
seven. 

Previous series analysis (2) using ratio methods for the six-dimensional 
11-term series gave K C = 0.092294 + 0.000007 with an imposed 7 = 1 and a 
deduced quoted A 1 = 1.02 ___ 0.05. 

The present analysis is based on the expectation that these series will 
have the general f o r m  

Z~ '[l+a(Kc-K)'~'+b(K-Kc)+...] (2) 

where y =  1 and A~ = ( d - 4 ) / 2  for d > 4 .  The logarithmic modification at 
d =  6 is not explicitly handled, and we expect it will lead to a lowering of 
the effective A1. We have estimated the location of the critical point and 
both the dominant and correction exponents, 7 and A1, respectively. Our 
analysis is carried out with no prior assumptions regarding exponent 

822/71/5-6-25 
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values. We have studied the series in the K variable with two methods, 
commonly known as M 1 and M2. These have been used and are discussed 
in refs. 13-15 and a version including three-dimensional visualization is 
currently being prepared for publication. (16) In both these methods the 
series are suitably transformed, and Pad6 approximants to the transformed 
series should intersect in a three-dimensional (Kc, 7, A1) parameter space. 

The d=  6 series give optimal convergence for both M1 and M2 near 
Kc = 0.092295. The M1 graph for this analysis is given in Fig. 4 for a range 
of temperatures centered on the above. Note the gaps between the 
approximants seen at the temperatures 0.092290 and 0.092300, indicating 

Table I. Coefficients a(n)  of Our High-Temperature Series for 
the Susceptibility in Powers of K, for General Dimensionality d 

a ( O ) = l  

a ( 1 ) = 2 d  

a (2)  = - 2 d  + 4d  2 

a(3)  = 2 d -  8d 2 + 8d 3 

a(4)  = 2 d +  8d 2 - 24d 3 + 16d 4 

a ( 5 ) =  - 6 d +  8d 2 + 3 2 d 3 - 6 4 d 4 +  32d 5 

a(6)  = - 4 6 d + 4 8 d  2 - 16d 3 + l12d  4 - 160d 5 + 64d 6 

a (7)  = 1 2 2 d - 3 5 2 d 2 + 2 6 4 d 3 - 1 2 8 d  4 + 3 5 2 d S - 3 8 4 d  6 + 128d 7 

a(8)  = 1 6 2 6 d - 2 6 0 8 d  2 + 6 1 6 d 3 + 5 2 8 d 4 - 5 4 4 d  5 + 1 0 2 4 d 6 - 8 9 6 d  7 + 256d 8 

a ( 9 ) =  - ( 1 2 2 9 0 / 3 ) d +  (42376/3)d  2 -  (44608/3)d  3 + ( 1 2 5 1 2 / 3 ) d 4 +  1312d s 

- 1920d 6 + 2 8 1 6 d V - 2 0 4 8 d  8 + 512d 9 

a(10)  = - 9 1 6 7 4 d +  (564500/3)d  2 -  (331232/3)d  3 + ( 1 8 1 1 2 / 3 ) d 4 +  (19040/3)d  5 

+ 3 8 4 0 d 6 - 6 1 4 4 d  7 + 7 4 2 4 d S - 4 6 0 8 d  9 + 1024d I~ 

a ( l l ) = 2 1 0 5 9 4 d - ( 2 5 1 4 4 4 0 / 3 ) d  2 + 1125208d3-(1798528/3)d 4 + 89312d 5 

+ 8192d 6 + 1 2 0 3 2 d T - 1 8 4 3 2 d  8 + 1 8 9 4 4 d g - 1 0 2 4 0 d  1~ + 2048d 1I 

a(12)  = 7443926d-(53279924/3)d 2 + (43455704/3)d  3 - (12613760/3)d  4 

- 141216d 5 + (474304/3)d  6 + (14080/3)d  7 + 37888d 8 - 52736d 9 + 4 7 1 0 4 d  1~ 

_ 22528d 11 + 4 0 9 6 d  a2 

a(13)  = -15843566d+(209490208/3)dZ- lO9272848d 3 + 77249728d 4 

- (72585056 /3 )dS+(5765632 /3 )d6+(865280 /3 )d7- (71168 /3 )dS+l16736d  9 
- 1 4 5 4 0 8 d  1~ + 1 1 4 6 8 8 d H - 4 9 1 5 2 d  ~2 + 8192d 13 

a(14)  = -829492286d+(6573743096/3)d2-2155450632d 3 + (2865993728/3) d4 

- (456250912 /3 )dS- (40569088 /3 )d  6 + (10250752/3)d  7 + 553728d 8 

- 1 4 4 3 8 4 d  9 + 3 4 9 1 8 4 d l ~  11 + 2 7 4 4 3 2 d 1 2 - 1 0 6 4 9 6 d  13 + 16384d 14 

a(15)  = ( 5 0 9 1 5 9 3 3 0 2 / 3 ) d -  (39892107016/5)d  2 + (41414984488/3)d  3 

- (34685058272/3)d4+(14984743328/3)dS-(5042989184/5)d  6 + 44514432d 7 

+ 6 0 6 0 5 4 4 d  8 + (3442688/3)d9-(1718272/3)d l~  12 
+ 6 4 7 1 6 8 d 1 3 - 2 2 9 3 7 6 d  TM + 32768d 15 



Fig. 4. Three-dimensional plot of approximants to the critical exponent 7 (known to be 1) 
as functions of inverse temperature K and correction exponent, for the M1 analysis at d=  6. 
Critical parameters correspond to optimal intersection for different curves. 
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Two-dimensional plot of approximants to the critical exponent y as functions of the 
correction exponent, at fixed K~=0.092295 in d=  6 for the MI analysis. 
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that convergence is found within the three central planes, which is equiv- 
alent to quoting Kc = 0.092295 ___ 0.000003. The M1 graph for the central 
temperature is shown in Fig. 5, where we see a nice convergence of 
approximants for A1 = 1.0 +0.3, with y = 1.000 within the limit of reading. 
The M2 graphs indicate the same Kc choice, but optimal convergence is 
seen for ~ =0.996 and near A1 ~0.75. We suspect that the latter might 
represent an effect of the logarithmic correction to the analytic value of A 1. 

In d = 7 ,  convergence was also better in M1, and we present-the 
three-dimensional graph in Fig. 6, leading to a temperature range of 
Kc = 0.077706 +__ 0.000002. From the graph at the central temperature in 
Fig. 7, we quote 7 = 1.00 + 0.02 and A 1 = 0.8 _ 0.2. 

Our estimates for the critical point can also be compared with the 1/d 
expansion ~ estimates, which are quoted as Kc = 0.113789 and 0.092253 for 
d = 5 and 6. This expansion can be summed to give Kc = 0,077693 for d = 7. 
We find the differences to decrease rapidly as d increases from 5 to 7; for 
6 and 7 dimensions the discrepancy with the 1/d extrapolation is already of 
the order of our Monte Carlo error. 

Fig. 6. Three-dimensional plot of approximants to the critical exponent 7 (known to be 1) 
as functions of the inverse temperature K and correction exponent, for d=7 for the M1 
analysis. Critical parameters correspond to optimal intersection for different curves. 
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Fig. 7. Two-dimensional plot of approximants  to the critical exponent ~ as functions of the 
correction exponent, at fixed Kc = 0.0777060 in d =  7 for the M1 analysis. 

In conclusion, for both d=  6 and 7, series expansions gave more 
accurate critical points than Monte Carlo simulations, and the letter gave 
critical amplitudes for the spontaneous magnetization. Series expansion 
showed indications of the expected corrections to scaling, while simulations 
for rather short times yielded estimates of the critical temperature from the 
behavior of the kinetic exponent z. Our techniques can be used to generate 
series expansions for higher-order susceptibilities and associated universal 
amplitude ratios, as will be discussed elsewhere. 
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